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Rydberg atoms
Gabriel Belumat

Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: Rydberg atoms are quantum objects
with unique properties. By exciting an electron to
a very high quantum number n, the atom acquires
"exaggerated" behaviour, with long-range interac-
tions, long-lived excited states and peculiar wave
functions. In this monograph, we will discuss about
these quantum objects, brie�y present the meth-
ods used to excite Rydberg states, discuss the wave
function of the hydrogen atom and show its equiv-
alence to the wave function of alkali atoms with a
single valence electron. And show an application of
Rydberg states in advanced quantum technologies.

1.1 Introduction

Rydberg atoms are excited atoms whose elec-
trons occupy high principal quantum number orbits
with high energy levels. In 1890, the Swedish spec-
troscopist Johannes Rydberg obtained an empirical
formula for several frequencies present in the hydro-
gen spectrum, by attempting to reproduce analyti-
cally the frequencies measured in the laboratory.

f = RH

(
1

m2
− 1

n2

)
(1.1)

However, as this was before to the development
of quantum mechanics, he was unable to explain the
formula he had obtained on a more theoretical ba-
sis. The explanation would came later with Bohr
and Sommerfeld, who quanti�ed the angular mo-
mentum of the electron orbits. When in a Rydberg
state, the valence electron of alkali atoms has a wave
function very similar to that of hydrogen, especially
when it is in states of very high angular momentum,
called circular states, this is due to the fact that the
charges in the nucleus are shielded by the charges
of the electrons that are in lower energy states, so
that the electron that is in a Rydberg state mostly
feels a Columbian potential identical to that of the

hydrogen atom. This explains why the Rydberg for-
mula applies to a wide range of atoms in states with
high principal quantum numbers.

Today, Rydberg atoms are widely implemented
in various quantum systems, being used in sensors
due to their sensitivity to electric and magnetic �elds,
producing sensors capable of detecting minimal changes
in the environment [12], as well as in areas of quan-
tum computing [11] and nonlinear optics, as medi-
ators of interactions between photons [13].

1.2 Excitation of Rydberg states

To produce Rydberg atoms, it is necessary to use
processes that can transfer a signi�cant amount of
energy to the electronic layer of the atom, but with-
out ionising it. Three di�erent techniques have been
used throughout history: electron impact, charge
exchange and photoexcitation. These three tech-
niques are brie�y discussed in [1].

1.2.1 Eletron Impact Excitation

e− +A→ A nl + e− (1.2)

This �rst method simply consists of bombarding a
rare�ed gas with an electron beam,the collision be-
tween the electron beam and the atoms of the gas
can transfer su�cient energy to the eletrons of the
atoms [Figure 1.1], producing a spectrum of excited
states along with ionised atoms. The ions formed
can be easily trapped by applying an electric po-
tential within the gas chamber. In this way, it is
possible to produce a beam of atoms with atoms in
di�erent Rydberg states along with other states.

This technique is much simpler than others be-
cause electron beams are easy to produce, and it
has been possible to control the energy of the elec-
trons in various ways, such as using a magnetic �eld.
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Figure 1.1: Sympli�ed experimental system to cre-
ate a atomic beam with Rydberg atoms using
eletron colisions.

However, the technique has low selectivity in terms
of which states are excited, and even by controlling
the energy of the electrons, there is no way of pre-
dicting which energy will be transferred to the atom
in a collision process.

1.2.2 Charge Exchange Excitation

A+ +B → A nl +B+ (1.3)

In this process, a chamber containing a rare gas
is bombarded with a beam of ions [Figure 1.2. In-
side the chamber, the ions can capture the electron
of a neutral atom with an energy greater than that
of the ground state. We then need to separate the
remaining ions by applying an electrical potential
that will de�ects the ions from their original trajec-
tory.

Figure 1.2: Sympli�ed experimental system to cre-
ate a atomic beam with Rydberg atoms using charg-
ing exchange of ions.

As with the other processes, the low e�ciency
in producing Rydberg states is also a problem, as
the fraction of Rydberg atoms produced compared
to the number of ions is very low, for states with
n=10, this fraction is about 10−3 [1]. We can think
that this problem is easily solved by improving the
size of the gas chamber, but this also improves the
scattering by the neutral atoms from the chamber,
resulting in more losses.

1.2.3 Optical Excitation

hf +A→ A nl (1.4)

The excitation of Rydberg states by optical exci-
tation has a crucial di�erence when compared to the
other two processes: it is possible to select the Ry-
dberg state created, by selecting the photon energy.
It consists in transferring the energy of a photon
to the electron in the atom, thus creating a speci�c
state. However, the di�culty of this process, lies in
the technological challenge of creating lasers with
the necessary wavelengths. However, the develop-
ment of lasers with the right frequencies has played
an important role in Rydberg atoms research.

1.3 Eletron Wave funcion

When working with quantum objects, we are al-
ways looking for a way to describe the system al-
gebraically, with a wave function or some state no-
tation. To analyze some e�ects and properties of
Rydberg atoms, one must �rst is to look for a wave
function that can describe the electron in a Rydberg
state.

For this task, we will use the quantum defect
method, which is a good approximation for atoms
with a single valence electron, including the hydro-
gen atom. The valence electron dynamics of a hy-
drogen atom in a Rydberg state and an electron
from an element such as sodium (Na) in a Rydberg
state are very similar. For Na, the valence electron
in a Rydberg state, sees the nucleus as having only
one unit of charge, since the rest of the electrons
are shielded by the rest of the electrons, but only
valid for the part of the wave function that is sig-
ni�cantly away from the nucleus, if we consider a
state with high ellipticity, that is, a state with low
angular momentum, part of the wave function may
be within the shielding of the other electrons in the
electrosphere, causing a loss of energy that can be
expressed as:

W =
−Ry

(n− δl)2
(1.5)

Where δl is an empirically observed quantum de-
fect for orbitals of angular momentum l. The energy
di�erences between a Na atom and a hydrogen atom
are clearer for states with low angular momentum,
for states with high l, this di�erence becomes negli-
gible, such a similarity facilitates our understanding
of the properties of Rydberg atoms , since the wave
functions of the hydrogen atom are well known. To
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begin our description, let's start with the Hamilto-
nian of hydrogen, given by:(

−∇
2

2
− 1

r

)
ψ = Wψ (1.6)

This is also true for valence electrons far from
the ionic nucleus, which feel only one unit of charge.
As already known for hydrogen, the wave function
can be written as the product of the angular and
radial solutions, with the angular part written as
normalized spherical harmonics of the form:

Ylm(θ, φ) =

√
(l −m)!

(l +m)!

2l + 1

4π
Pml (cos θ) eimφ

(1.7)
Where l is the angular momentum projected in

the quantization axis, and can be zero or a positive
integer, m is the magnetic quantum number and
goes from −l to l. But the interesting part is the
radial part, where we can see the di�erences between
the atoms. The equation for the radial part can be
written as:

∂2ρ

∂r2
+

[
2W +

2

r
− l(l + 1)

r2

]
ρ = 0 (1.8)

Where, by de�nition R(r) = ρ(r)
r . This equa-

tion is the Coulomb radial equation, and has two
solutions, a regular one (f(W, l, r)) and an irregu-
lar one (g(W, l, r)). Given the boundary conditions
ψ → 0 for r → 0 and r → ∞, only the regular
solutions are allowed. For r → 0, the solution be-
haves like f ∝ rl+1. Considering W < 0, we can
introduce an e�ective quantum number β de�ned
by W = − 1

2β2 . For r → ∞, the solution f can be
expressed as increasing and decreasing exponential
functions u(β, l, r) and v(β, l, r) [2], where f is given
by:

f → u(β, l, r) sin πβ − v(β, l, r)eiπβ (1.9)

Looking again at the boundary condition ψ → 0
for r → ∞, it is possible to notice that we need to
β to be an integer n, thus recovering the hydrogen
allowed energies W = − 1

2n2 . It is possible now pos-
sible to use quantum defect theory [1], to �nd an
approximation for the wavefunction of atoms with
a single valence electron. Changing the potential
−1/r of the hydrogen atom for the e�ective poten-
tial Veff (r) of an ionic spherical nucleus, the only
notable di�erence is found in the radial equation.
Points with lower r, interacting with the nuclei of

the atom, see a larger charge. In the points far from
the nucleus, is not possible to distinguish the po-
tential of a Coulomb potential. Thus, the e�ect ob-
served in the external wave function is just a change
in the phase relative to the hydrogen atom [Figure
1.4]. For a s electron, the phase shift relative to H
can be expressed as:

τ =

∫ r0

0

{
[W − Veff (r)]

1
2 −

[
W +

1

r

] 1
2

}
√

2 dr

(1.10)
For regimes where |W | << 1/r0, it is possible to

extend this expression in power series and take only
the �rst order::

τ =

∫ r0

0

Vd(r)
(r

2

) 1
2

dr. (1.11)

Where Vd(R) is de�ned as Vd = − 1/r − Veff .
Thus, the pure f radial solution of the hydrogen
wave function is replaced by:

ρ(r) = f(W, l, r) cos τ − g(W, l, r) sin τ, (1.12)

Where g(W, l, r) is the irregular solution of the
Coulomb equation. This leads to a change of the
e�ective principal quantum number β de�ned in 2.8.
Considering the boundary conditions, we get β =
n−τ/π, where τ/π is the quantum defect δl. Then,
the wave function for a single valence electron, with
large radius states, can be written as:

ψ =
Ylm[f(W, l, r) cos πδl − g(W, l, r) sin πδl]

r
.

(1.13)
Which has the allowed energies:

W = − 1

2(n− δl)2
. (1.14)

These energies have already been introduced in
equation 2.4, and the constant δl describes the dif-
ference between the energies of the single valence
electrons, and the hydrogen electron. For states
such as the circular states, which will be brie�y dis-
cussed next, the probability of the electron being
encontered at r < r0 is too small, that way, so the
energy dumping became very small.

1.4 Quantum Technologies

Due to some characteristics of Rydberg states,
such as long-range dipole-dipole interactions, long-
lived states, high coupling to external �elds, Ry-
dberg atoms are widely used in the development
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Figure 1.3: Behavior of the electron wave function
of an alkali atom and a hydrogen atom. The alkali
electron aquires a phase τ due to its interaction with
the potential of the ionic nucleus.

of quantum technologies. Platforms using Rydberg
atoms can be used as versatile quantum simulators,
enabling the simulation of many-body systems [3],
in addition to being a promising platform for the
implementation of quantum computing algorithms
[4].

1.4.1 Quantum processor

One of the biggest problems with quantum com-
puting is the low �delity of the systems, which leads
to data loss during processing. To get around this,classical
computing uses error correction algorithms that can
make copies of the processed data to ensure �delity
at the end of processing, but in quantum systems
it is not possible to make a copy of quantum states
due to the no cloning theorem [10]. What can be
done is to use quantum entanglement to increase
the �delity of the systems.

Figure 1.4: Schematic drawing of the experiment,
in which atoms are moved in a two-dimensional net-
work, using optical tweezers, in this way, it is pos-
sible to create quantum logic gates (zone 1). To
increase the �delity of the system, another set of
atoms (zone 2) is used for an error correction al-
gorithm using quantum entanglement. Image from
[9]

In [9], an experimental setup is shown that uses
optical tweezers to move atoms in a two-dimensional
network, while exciting the atoms in a Rydberg
state and in a clock state, the clock state of the
atoms is used to store the information generated
by the qubit, while the Rydberg state is used to
generate entanglement between the atoms used for
processing and the atoms used for error correction,
thus increasing the �delity of the processor, a very
important advance for quantum computing.

1.5 Conclusion

Rydberg atoms proved to be very interesting ob-
jects to study, with a wide range of applications and
peculiar properties. In an attempt to better under-
stand the electronic function in Rydberg states, the
similarity of the wave functions for an alkali atom
and a hydrogen atom was shown, a result that I �nd
surprising, given the complexity of atomic systems
with many electrons. The quantum de�ect theory
approximation is able to make reasonable correc-
tions even for Rydberg states with higher ellipticity.

It was still possible to brie�y discuss a quan-
tum technology under development, that uses the
concept of Rydberg states in the context of quan-
tum computing, using such states to generate long-
range entanglement and applying error correction
algorithms to increase the �delity of the systems
used for quantum processing.
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Schrödinger cats
João V. B. de S. Merenda

Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: Quantum mechanics, developed in the
early 20th century, revolutionized our understand-
ing of the microscopic world. Schrödinger proposed
his famous experiment in 1935 to question the im-
plications of these quantum peculiarities on macro-
scopic objects, exempli�ed by a cat that exists in a
paradoxical state of being both alive and dead. This
work explores Schrödinger's cat, a thought experi-
ment that illustrates quantum mechanics' peculiar-
ities, challenging traditional interpretations of real-
ity. Laboratory experiments inspired by Schrödinger's
cat, including photon entanglement and ion super-
position, are discussed, highlighting key advances in
recreating "cat states" under controlled conditions.

2.1 Introduction

In the early 20th century, the rise of quantum
mechanics revolutionized our understanding of the
microscopic world. Unlike classical physics, which
describes a predictable, well-de�ned reality, quan-
tum mechanics is inherently probabilistic: particles
can exist in multiple states simultaneously, a phe-
nomenon called superposition, until they are ob-
served. This shift raised fundamental questions about
the nature of reality: if particles can be in several
states at once, what does this imply for our under-
standing of the physical world?

There are three primary perspectives about the
inderteminancy of quantum mechanics:

The Realist Position, led by Einstein in the
EPR paradox [1], holds that nature is entirely ob-
jective. Any measurement uncertainty arises from
incomplete information or hidden variables, rather
than an intrinsic indeterminacy. From this perspec-
tive, quantum mechanics is seen as an incomplete
description of nature.

The Orthodox (or Copenhagen) Interpreta-
tion contends that quantum mechanics is a complete

theory, but that certain aspects of quantum reality
inherently prevent a fully deterministic description.

The Agnostic Position suggests that the true
state of a system between its creation and measure-
ment cannot be experimentally veri�ed, making it
impossible to de�nitively ascertain the nature of the
microscopic world.

To illustrate the paradox of quantum mechan-
ics, physicist Erwin Schrödinger proposed his fa-
mous thought experiment, "Schrödinger's Cat" in
1935. He envisioned a cat in a sealed box, its life
or death dependent on a probabilistic event. Until
observed, the cat is simultaneously alive and dead,
an idea that sharply contrasts with our everyday
experience of reality and highlights the strangeness
of quantum mechanics.

In the sections that follow, we will explore key
concepts: Section 2.2 introduces the basics of the
Copenhagen interpretation of quantum mechanics;
Section 2.3 explains Schrödinger's cat experiment;
Section 2.4 shows the mathematical formulation of
the Schrödinger's cat state; Section 2.5 examines
real-world laboratory experiments inspired by Schrödinger's
cat; and Section 2.6 considers the implications for
quantum computing.

2.2 Basic Concepts

Non-relativistic quantum dynamics is governed
by Schrödinger's equation (2.1), which describes the
time evolution of a quantum system.

Ĥ|Ψ〉 = i~
∂

∂t
|Ψ〉 (2.1)

This linear di�erential equation has either a dis-
crete or continuous set of solutions. For clarity, we
will focus on the discrete case, noting that all con-
cepts can be extended to the continuous case. Be-
low, we will de�ne the pillars of the Copenhagen
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interpretation, established by Niels Bohr, Werner
Heisenberg, Max Born, and others.

1. The superposition principle: Due to the
linearity of Equation (2.1), any state of the
system can be expressed as a linear combina-
tion of the system's eigenstates:

|Ψ(x, t)〉 =
∑
n

cn|ψ(x)〉e−iEnt/~ (2.2)

The wave function |Ψ(x, t)〉 provides complete
information about the system, encapsulating
all possible states, each of which evolves si-
multaneously over time.

2. The statistical interpretation: Max Born
emphasized the fundamentally probabilistic na-
ture of quantum mechanics. The wave func-
tion itself encodes probabilities: the square of
its module gives the probability of �nding the
system in a particular state. Each coe�cient
cn in the wave function represents a probabil-
ity amplitude for a speci�c state, and these
amplitudes must be normalized, as shown in
equation (2.3), to ensure that the total prob-
ability across all possible states is 1.

||Ψ||2 =
∑
n

|cn|2 = 1 (2.3)

3. Observables: In quantum mechanics, mea-
surements of a system are represented by Her-
mitian operators, which represents observ-

ables measures, such as energy, momentum,
postition. Each Hermitian operator is associ-
ated with a set of eigenstates:

Â : H → H ⇒ Â|ψ〉 = an|ψ〉 (2.4)

The concepts above, along with the measure-
ment paradox discussed below, form the basis of
the Copenhagen interpretation [2, 3, 4].

2.2.1 Quantum measurements

The measurement problem plays a central role
in quantum theory. In classical physics, a system
is fully described by a complete set of measurable
physical quantities, each with well-de�ned values
[2]. In quantum mechanics, however, only a spe-
ci�c set of observables can be measured, and these
observables are subject to intrinsic limitations. Not
all properties can be simultaneously measured with

precision, as highlighted by the Uncertainty Princi-
ple. This distinction raises fundamental questions
about the nature of reality and measurement in quan-
tum systems.

The measurement problem, or measurement para-
dox, was �rst examined by John von Neumann in his
book Mathematical Foundations of Quantum Me-

chanics [5]. Von Neumann proposed that the mea-
surement apparatus projects the operator Â onto an
eigenvector basis, producing a distribution of proba-
bility amplitudes for the possible outcomes as shown
in equation (2.5). Subsequently, when the scientist
observes the result, the system is reduced to a single
possible state, e�ectively collapsing the wave func-
tion. This e�ect is known as wave function collapse
or wave function reduction.

〈Â〉 =
∑
k

ak|ck|2 (2.5)

The Copenhagen school argued that a classical
apparatus is essential to collapse the wave function,
as described by von Neumann. However, there is no
clear way to de�ne the precise boundary between
the quantum and classical realms in nature's de-
scription.

2.3 The Schrodinger's Cat as a

thought experiment

In response to the EPR paradox (see section 2.1)
and the peculiar nature of quantum measurements,
Erwin Schrödinger proposed the famous thought ex-
periment known as Schrödinger's cat in 1935 [6].

Imagine a cat placed inside a sealed box along
with a mechanism triggered by the decay of a ra-
dioactive atom. If nuclear decay occurs, the device
releases poison, killing the cat. However, the box is
completely sealed, so no external observer can deter-
mine the cat's state until they open the box. Since
atomic decay is a probabilistic event, quantum me-
chanics suggests that, until observed, the atom ex-
ists in a superposition, both decayed and undecayed
simultaneously. This implies that the cat, a macro-
scopic object, is also in a superposition, being both
alive and dead at the same time, as shown in (2.6),
a scenario clearly impossible in the classical world.

|Ψcat〉 =
1√
2

(|Ψalive〉+ |Ψdead〉) (2.6)

Schrödinger's point was to show how strange and
counterintuitive quantum superposition is when ap-
plied to real-life objects, highlighting the disconnect
between the quantum and macroscopic worlds.
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Figure 2.1: A conceptual diagram illustrating
Schrödinger's cat thought experiment, where the
cat is simultaneously alive and dead until an ob-
servation is made.

2.4 Cat's state

We can describe the light in quantum mechanics
into two difrerent ways: using the photon number
|n〉, also known as Fock states, or using coherent (or
Glauber) states |α〉. In practice terms, we can ex-
press the coherent states in terms of the Fock states:

|α〉 = e|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (2.7)

Figure 2.2: (a) Wigner function of a coherent state
with α = 1.5, showing near-classical behavior. (b)
Wigner function of a Fock state with n = 3, high-
lighting purely quantum characteristics.

Figure 2.2 illustrates the Wigner functions of
Fock and coherent states. Fock states exhibit purely

quantum behavior. In contrast, coherent states,
while still fundamentally quantum, are as close to
classical behavior as possible. As the photon num-
ber |n〉 increases in the Equation (2.7), the uncer-
tainty in the system decreases, resulting in a state
that appears increasingly classical.

Now, consider a system in a pure state (or super-
position) of two opposite coherent states, as shown
in equation (2.8). This state can also be represented
by a density matrix, as in equation (2.9), which cor-
responds to what is known as a "cat state." In this
matrix, the diagonal terms represent the popula-
tions, while the o�-diagonal terms correspond to the
coherence between states. Figure 2.3(a) displays the
Wigner function of the cat state, highlighting the
interference pattern between the two peaks.

|Ψcat〉 =
1√
2

(|α〉+ | − α〉) (2.8)

ρcat =
1

2
((|α〉+ | − α〉)(〈α|+ 〈−α|)) (2.9)

Figure 2.3: (a) Wigner function representing a `cat
state,' a superposition of two opposite coherent
states. (b) Wigner function of the same system after
decoherence, showing the loss of quantum coherence
and a shift towards a classical mixture.
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However, interaction with the environment causes
decoherence, which destroys the cat state, trans-
forming it into a statistical mixture, as shown in
Figure 2.3(b) [9].

2.5 The Schrodinger's cat in lab-

oratory

Producing Schrödinger's cat states, often called
"cat states", in the laboratory is very di�cult. In-
teractions between the system and its environment,
also referred to as decoherence, quickly disrupt any
attempt to maintain a coherent superposition. How-
ever, in this section, we will highlight some success-
ful examples of cat state generation achieved in ex-
perimental settings.

2.5.1 Haroche's experiment

The �rst experiment was conducted by Haroche
and collaborators in 1996 [7]. We can divided the
experiment into two steps:

1. Preparation of the cat state: The exper-
iment utilized circular Rydberg atoms of ru-
bidium, where the outer electron orbits in a
large-diameter circle, approximately a thou-
sand times larger than that of a ground-state
atom. These states, |e〉 (with n = 51) and |g〉
(with n = 50), were prepared using a combi-
nation of laser and radiofrequency excitation
techniques.

To create the superposition, a pulse of reso-
nant microwave radiation was applied, mix-
ing the |e〉 and |g〉 states in the R1 cavity
shown in �gure 2.4. This resulted in a coher-
ent superposition where the electron simulta-
neously occupied the two states, analogous to
Schrödinger's cat as shown in equation (2.10).
The interference between the states produced
a dynamic electric dipole in the atom, behav-
ing like a rotating antenna sensitive to mi-
crowave radiation at 51 GHz.

2. Measurement of the cat state: The mea-
surement involved detecting the phase shift
of the atomic dipole caused by its interaction
with the cavity �eld denoted by C in �gure
2.4. This phase shift is in�uenced by the non-
resonant microwave �eld interacting with the
atom, which shifts the atomic energy levels
and alters the dipole's rotation frequency. Im-
portantly, this method does not absorb or de-

stroy the photons, maintaining the integrity of
the system, a non-destructive measurement.

The magnitude of the phase shift, which could
reach up to 180°, correlated directly with the
number of photons in the cavity, e�ectively
allowing for photon counting. This approach
ensured the ability to probe the quantum state
of the light �eld while preserving the coher-
ence of the cat state. The measurement of
the phase shift occurs in the cavity R2 (see
�gure 2.4).

This methodology showcases a precise inter-
action between Rydberg atoms and the mi-
crowave cavity, highlighting the quantum be-
havior of light and matter.

|Ψ〉 =
1√
2

(|e, αeiφ〉+ |g, αe−iφ〉) (2.10)

Where φ is the radiation �eld phase. The exper-
imental apparatus is shown in Figure 2.4

Figure 2.4: Experimental setup of the cavity QED
Ramsey interferometer. Insets illustrate the atom in
a circular orbit, prepared in an initial energy eigen-
state (left) and then in a superposition state after
interacting with the microwave �eld in cavity R1.
Font: Haroche, 2013 [8]

After exiting the R2 cavity, the decoherence pro-
cess begins, gradually causing the system to behave
more classically, as illustrated in Figure 2.5. Dur-
ing decoherence, interactions with the environment
cause the quantum superposition of states to break
down, leading the system toward a state that ap-
pears classical. This experiment was fundamentally
important for exploring the boundary between clas-
sical and quantum mechanics.
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2.5.2 Others Schrödinger's cat exper-

iments

In 1999, Arndt and Zeilinger conducted a exper-
iment with large molecules, including C60 "bucky-
balls," revealing interference patterns that con�rmed
wave-like behavior. This demonstrated superposi-
tion in larger, complex molecules, signi�cantly ex-
tending the reach of quantum mechanics into more
massive systems and challenging traditional bound-
aries of quantum behavior [10].

In 2005, Wineland's team at NIST created Schrödinger
cat states with trapped beryllium ions, showing su-
perpositions in which ions existed in multiple quan-
tum states at once. This experiment explored coher-
ence in atomic superpositions and helped develop
techniques for quantum information.

Figure 2.5: The evolution of a Schrödinger cat state
as a single atom crosses the cavity, demonstrating
decoherence over time: (a) t = 1.3ms (b) t = 4.3ms,
and (c) t = 16ms. As time progresses, the system
transitions from quantum superposition to a statis-
tical mixture state. Font: Haroche, 2013 [8]

2.6 Implications for Quantum Com-

puting

Schrödinger's cat plays a fundamental role in
quantum computing, quantum information and quan-
tum cryptography. The fundamental unit of infor-
mation in quantum computing, the qubit, serves a
similar role to the classical bit. However, unlike a
classical bit, which can exist in one of two distinct
states (0 or 1), a qubit can exist in a superposition of
both states simultaneously as the Schrödinger's cat
(see equation (2.11)). This property allows quan-
tum computers to process vast amounts of informa-
tion in parallel, o�ering exponential speedups for
certain computational tasks.

Despite this advantage, quantum systems are
highly sensitive to external disturbances, a phenomenon
known as decoherence. Due to decoherence, the
fragile quantum states rapidly lose their coherence
and transition to classical behavior if they are not
carefully isolated from their environment. This sen-
sitivity to disturbance is one of the most signi�cant

challenges in maintaining and scaling quantum com-
puters, as even minor interactions with the environ-
ment can collapse the superposition states, e�ec-
tively reducing computational power.

Known as Bell states when pairs of qubits are
perfectly entangled (see equation (2.12)), entangle-
ment allows qubits to perform tasks beyond the ca-
pability of classical bits. This quantum correlation
enables unique applications, such as quantum tele-
portation and quantum key distribution in cryptog-
raphy, where information can be transmitted with
theoretically unbreakable security. In quantum com-
puting, entanglement is a key resource for perform-
ing quantum logic operations, linking qubits in ways
that enhance computational power and enable the
execution of complex algorithms like Shor's and Grover's
algorithms.

|Ψ〉 = α|0〉+ β|1〉 (2.11)

|ψ〉 =
1√
2

(|00〉+ |11〉) (2.12)

2.7 Conclusion

In the macroscopic world, classical mechanics
governs the behavior of objects with certainty and
determinism. In contrast, the microscopic world ex-
hibits strange phenomena that challenge our con-
ventional understanding of reality. One of Bohr's
postulates, the complementarity principle, suggests
that quantum mechanics is a complement to classi-
cal mechanics, but the boundary between the two
remains unclear. Schrödinger's cat experiment, pro-
posed in 1935, explores the relationship between a
probabilistic system (such as radioactive decay) and
a macroscopic object of measurement, the cat. This
thought experiment helps to shed light on the fron-
tier between quantum and classical realms. How-
ever, creating Schrödinger's cat states in the labo-
ratory is challenging due to decoherence, the loss of
quantum information to the environment. Despite
this, physicists like Haroche and others have suc-
cessfully generated Schrödinger's cat states in the
lab, bringing us closer to understanding the bound-
ary between the quantum and classical worlds.
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Abstract: The �eld of dipolar quantum gases has
blossomed due to the manifestation of unique ef-
fects introduced by dipole-dipole interaction. In
these ultracold systems, quantum �uctuations en-
ergy can become relevant, which potentially brings
to the emergence of simultaneous behavior of solid
and super�uid, known as supersolidity. This work
reviews the main aspects of the supersolid phase
and brie�y summarizes key experimental evidence
of its occurrence. Restricting us to a thin shell trap,
we propose an ansatz to build a diagram of phases.
Bose-Einstein condensate and isolated droplets do-
mains have been predicted, with the possibility of
supersolidity in a narrow region between them. Our
�ndings partially agree with the reference numerical
results.

3.1 Introduction

Ultracold gases have been established as a plat-
form to study extreme e�ects of the quantum nature
of matter. The competition between dimensionality,
geometry, and the strength of interactions, highly
tuned in these systems, raises a myriad of regimes
inconceivable before the development of Quantum
Mechanics. One of these, Bose-Einstein condensa-
tion, requires the lowest temperatures known by hu-
manity, and has been shown as a fertile ground for
the appearance of novel physical phenomena. Ex-
amples of these occurrences include propagation of
distinct modes of sound, vortex dynamics, topolog-
ical transitions, and the arising of new phases of
matter [1, ?, 3].

In particular, dipolar gases polarized by a strong
magnetic �eld present unique signatures. Their in-
terplay of isotropic and short-ranged contact inter-
action in front of an anisotropic and long-ranged
dipole-dipole potential modi�es the density pattern.
Besides it, con�nement provides additional spatial

constraints. As a result of this balance, special fea-
tures can arise, like new arrangements or distinct
collective modes [1, 4]. An eccentric trapping con-
sists of thin shells or bubbles, a kind of harmonic
oscillator whose minimum is displaced by a �nite
radial distance from the center of the trap. Apply-
ing this potential in an ultracold dipolar gas reveals
unrecorded consequences in any other combination
of trap and interactions [1].

Recent works have pointed out the quantum �uc-
tuations also should be added to this balance [5, ?].
This energy correction explains why systems pre-
viously expected to collapse could be maintained
stable for large lifetimes [?, 3, 4, 5]. Additionally,
taking into account this term has been useful for
theoretically predict dipolar quantum droplets and
supersolids [5, ?], exotic phases of matter experi-
mentally recorded [?, 3].

This work describe what is a supersolid and how
it can emerge in dipolar ultracold gases as a conse-
quence of quantum �uctuations. It will be supposed
the system is initially Bose-Einstein condensed and
the text is organized as follows. The Section 3.2
contains the mathematical tools that govern the
systems of interest remarking standard Mean Field
regime and Beyond Mean Field correction. At this
point, the exotic phases of quantum droplets and
supersolids are presented in Sections 3.3 and 3.4,
respectively. Section 3.5, introduces thin shell trap
and cites the occurrence of these phases of matter in
this platform. Finally, Section 3.6 brings the �nd-
ings of our group at IFSC and compares it with the
main available theoretical results.

3.2 Background

Bose-Einstein condensates (BECs) are systems
characterized by a macroscopic population of a unique
microscopic state. As a consequence, this phase of
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matter shows properties due exclusively to this only
one state. In addition, two remarkable features of
BECs are coherence and O�-Diagonal Long Range

Order. It means all the system behaviors like an
individual entity due to the wave character of the
atoms [7].

To describe a BEC and the transitions to other
phases by tuning of distinct parameters, it should
be introduced the extend Gross-Pitaevskii Equation
(eGPE)[
− ~2

2m
∇2 + Vtr(~r) + Vint(~r) + γQF |Ψ|3

]
Ψ(~r, t) =

= i~
∂Ψ

∂t
.

(3.1)

Inside the square brackets, the �rst term is the
kinetic energy, whose contribution is appreciable only
for low number of atoms. The second one is the ex-
ternal trap potential, needed in most cases to con-
�ne the atoms. Usually, this term has a harmonic
form, but recently other geometries like cigar, pan-
cake, cylinder, hollow sphere, and bubble have been
employed. The third contribution takes into ac-
count the interatomic interaction, i. e., this is an
internal potential, in contrast to the last one. In
polarized dipolar gases, that term is given by

Vint(~r) = g|Ψ|2+
1

2

∫
dτ ′

Cdd
4π

1− 3cos2(θ)

|~r − ~r′|3
|Ψ(~r′, t)|2,

(3.2)
where g = 4π~2as/m, the contact interaction pa-
rameter, depends on the s-wave scattering length,
Cdd = µ0µ

2 is related to the magnetic moment of
the species, while θ is the angle between the dipole's
direction and the relative position vector (see �gure
3.1).

Figure 3.1: De�nition of the angle θ. How one can
note, the dipolar interaction is anisotropic. The
limit alignments, head-to-tail and side by side pro-
vide, respectively, the lowest pair interaction energy
and the most energetic cost. Figure adapted from
[8].

It must be emphasized that there is a competi-
tion between interactions of very distinct natures.
On one hand, the collisions by contact (�rst term
in the right side of equation (3.2)) are treated by
an isotropic and local pseudopotential; on the other
hand, the dipolar one (second term on right of (3.2))
is anisotropic and long-ranged. Besides the inter-
play of this components, the geometry of the trap
potential also impacts the stabilization of the sys-
tem.

The last term inside the bracket in (3.1) is the
�rst quantum �uctuations correction (LHY), intro-
duced by Lee-Huang-Yang in their seminal work [9].
Habitually, this energy contribution is very low due
to its dependence with the density raised to three
half. However, the LHY correction is able to stabi-
lize systems that interaction balance would conduce
to collapse.

In many cases, LHY energy can be neglected,
an approach called Mean Field regime. In this de-
scription, the interplay of the trapping, contact, and
dipolar potentials is enough to bring the ultracold
gas to a long-lived BEC in most situations. For ex-
ample, if g > 0 is very large, a cigar trap elongated
in the direction of the dipoles favor the head-to-tail
orientation, which compensates the high repulsion
of the collisions. On the other hand, to g < 0, a pan-
cake trap can stabilize the system by maximization
of side by side disposition of atoms.

Nonetheless, there are con�gurations of dipolar
gases that quantum �uctuations are indispensable
to explain why collapse does not happen. The mech-
anism behind it lies on an attractive Mean Field
contribution in front of a repulsive Beyond Mean
Field energy due to large density [?, 3]. In fact,
beyond a stable BEC, another phases with unique
features have been registered [?]. They will be next
described.

3.3 Quantum droplets

At this point, it is introduced the relative mag-
nitude of the dipolar interaction

εdd =
add
as

:=
Cddm

12π~2as
,

which measures how much this term is stronger than
contact potential.

When εdd and the number of particles N in-
crease, the dipolar gas is reorganized in a phase
denser than the BEC [?, 3]. Even if the trap is
switched o�, the atomic cloud can remain cohesive.
This happens if N is large enough (> 103 atoms),
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when the kinetic energy is not appreciable and in-
teractions dominate [3]. This feature is called "self-
boundness", and that con�guration is a quantum
droplet, a di�erent phase to BECs. The latter can
present super�uid features, while the former shows
similar properties to ordinary liquids [?, 3].

The most remarkable similarity between dipolar
quantum droplets and classical liquids is the den-
sity saturation. Whether N increases, the density
along the polarization direction will be saturated
(see Figure 3.2 a)). This can be interpreted as a
sign of low compressibility of dipolar droplets due to
the restriction to maintain an e�ective head-to-tail
alignment [?]. This saturation provides to dipolar
quantum droplets a �at-top pro�le. In the center
of the arrangement the density is nearly constant,
although it decreases rapidly near the boundaries of
the droplet, as illustrated in Figure 3.2 b).

Figure 3.2: Density pro�le of a quantum droplet
through the polarization direction. a) Increasing
the number of atoms brings a saturation of den-
sity, beyond which the dipolar droplet can only grow
rather than become denser. b) Flat-top density pat-
tern. Figure adapted from [?].

The higher density of dipolar quantum droplets
in comparison to BECs is explained by Beyond Mean
Field e�ects. In these systems, attractive interac-
tions leaded by dipolar energy overcome the repul-
sive term. The Mean Field approach predicts a col-
lapse, avoided by quantum �uctuations correction,
that arises due to the large density of the con�gura-
tion. As a consequence, total energy has a minimum
at a larger density than that of usual BECs. This
energy balance is represented in Figure 3.3.

Hitherto, only an individual quantum droplet
arisen from tuning of εdd and N has been consid-
ered. However, increasing these parameters (εdd >
1, N & 104) or the con�nement in the direction of
the dipoles can drive the system to break in many
droplets to avoid side by side orientation. In most
cases, there is no connection between the droplets

Figure 3.3: In a quantum droplet, the net dipo-
lar attraction (dash-pointed curve) overcomes the
repulsion energy provided by contact interaction
(dashed curve). Nevertheless, the collapse predicted
by Mean Field treatment (black solid curve) does
not occur. In contrast, the LHY energy (red curve)
becomes relevant as the density increases. The en-
ergetic balance (blue curve) point out a density
that stabilize the arrangement, where that density
is larger than the usual BECs' one. Figure elabo-
rated by [?].

and the density falls to zero between them (See Fig-
ure 3.4), which cause loss of coherence, as shown by
interference experiments [5].

Figure 3.4: Di�erent density aspects of iso-
lated droplets (left), supersolids (center) and BEC
(right). The top and bottom lines show the the-
oretical and observed pro�les, respectively. Figure
elaborated by [?].

3.4 Supersolids

Even though the transition from a BEC to iso-
lated droplets is the most frequent, a di�erent phase
can emerge in a very narrow strip of the parame-
ter space. This phase is characterized by the pres-
ence of many dipolar droplets, now connected by a
background of non-zero density (Figure 3.4). The
droplets are periodically organized, like a solid. Nonethe-
less, the background has super�uid features, as non-
classical rotational inertia [4]. In this phase, every
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single atom is simultaneously in the droplets and in
the super�uid portion. This provides coherence [3]
in addition to both Diagonal (typical in solids) and
O�-Diagonal Long Range Orders (present in super-
�uids) [4]. This latter dual trait is related to two
symmetries broken to originate this phase: contin-
uous translational invariance and gauge one [?, 3].

This character can be veri�ed through excitation
spectra. There is a roton mode associated with ev-
ery symmetry broken [3]. Rotons are elementary ex-
citations identi�ed by a parabolic relation of disper-
sion (energy-momentum) near the minimum, which
is located at a �nite value [4]. It manifests as an
additional perturbative modulation of density [?].
A transition from BEC to supersolid phase is indi-
cated by splitting of one rotonic mode into two with
distinct behaviors. They are originated by the su-
perposition of super�uid and crystal phonons [10].

Figure 3.5: Splitting of the quadrupole mode in a
supersolid cigar-shaped. Before phase transition,
both modes are degenerated in BEC. When εdd
crosses the critical value, this degeneracy is lifted
and a mode correspondent to solidity arises (red
line). It consists of a lattice deformation whose
frequency increases as the intensity of dipolar in-
teraction grows. The frequency saturates when iso-
lated droplets arrangement is reached. Contrarily,
the other mode corresponds to a compression of
super�uid (blue line), which energy decreases un-
til disappears as εdd increases. This occurs due to
gain of e�ective mass. [11]. Solid curves and dots
inside them come from Beyond Mean Field calcu-
lations. Circular and square dots represent experi-
mental data. Figure adapted from [11].

The lowest-lying excitation is related with super-
�uid properties. It is composed of out-of-phase os-
cillations of the background in relation to the crys-
tal arrangement [10], which causes an imbalance in
the droplet populations [?, 3]. The correlation be-
tween relative displacement and variation of density
of the droplets follows the comportment predict by

the Beyond Mean Field approach [12].
Conversely, the other mode lifted at phase tran-

sition is proper of the solid nature of the regime. In
this case, all system oscillates in-phase [10]. The en-
ergy associated with this process rapidly increases
as εdd overcomes the critical value, which brings
this mode to interact and deform the quadrupo-
lar one through avoid-crossing mechanism [?]. The
quadrupole mode also su�ers splitting in supersolid
domain (Figure 3.5). These last excitations are eas-
ier to be detected due to their higher energies.

3.5 Thin shell

Spherical shell systems are special owing to they
create an extra geometric restriction and accommo-
date new excitations [1]. This e�ect arises due to
the appearance of a second surface. Shell trapping
potential presented in Equation (3.1) is given by [?]

Vtr(r) = mω2
0r

2
0

√
[(r/r0)2 −∆/ε]

2

4
+ (Ω/ε)2,

(3.3)
where r0 = 12πadd and ε = ~2/(mr20) are scales of
length and energy, respectively, while ∆ is the de-
tuning between the dressing radiofrequency and the
frequency of resonance and Ω is the Rabi coupling
frequency.

This kind of potential is derived from radiofre-
quency dressing (Figure 3.6). Di�erent bare Zeeman
states subjected to a tridimensional magnetic �eld
are coupled by radiofrequency, which is resonant
at some positions. This modi�es the Hamiltonian
of the system and other eigenstates arise. These
"dressed states" are now submitted to a new poten-
tial with distinct minima [13]. Thus, if the atoms
are initially in a single Zeeman state, they tend to
migrate to these minima.

When ∆ = Ω, the choice of a large detuning
approximates (3.3) by

Vtr(r) ≈
1

2
mω2

0 (r −R)
2
,

where R = r0
√

∆/ε is the maximum of the radial
distribution. This means shell becomes a displaced
harmonic oscillator around R. If ω0 is su�cient
large to maintain the atoms tightly con�ned, the
spatial restriction imposed by this thin shell in front
of the anisotropy of the dipolar interaction provides
unique signatures. The most noticeable of them are
density pro�le and elementary excitations, even in
the Mean Field regime [1].
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Figure 3.6: Radiofrequency dressing of an one-
dimensional system comprising J=1 Zeeman states.
a) Bare-states feel the potential proportional to the
amplitude of the magnetic �eld, B(~r). They are
coupled by resonant radiofrequency. b) New po-
tentials seen by dressed states. The most energetic
one presents minima where the atoms tend to mi-
grate. The three-dimensional equivalent of this con-
�nement is a spherical shell. Figure adapted from
[13].

Nevertheless, considering Beyond Mean Field ef-
fects is the only way to predict the supersolids in
this geometry. Recently, [?] have predicted this
phase by numerically solving of eGPE (3.1). They
have built a parameter space εdd vs N , which lo-
cates the BEC domain, the isolated droplets regime
and a very narrow supersolid region (Figure 3.7).

Figure 3.7: On left is shown an equatorial cut of
a supersolid bubble-shaped. The polarization axis
is crossing the paper plane. It should be noted the
denser clusters, where the droplets are placed, and
the super�uid background connecting them. On the
right, there is a phase diagram of the dipolar thin
shell that contains 164Dy atoms. The numbers in-
dicate the quantity of quantum droplets in each re-
gion. The one without number is the BEC domain.
The narrow range of supersolid occurrence corre-
sponds to numbers 5 and 6. Figure elaborated by
[?].

3.6 Our work at IFSC

Our group at IFSC has been working to reach
the results achieved by [?] without employing nu-
merical solving. In contrast, the approach is per-

forming semi-analytical calculations of expected value
of the Hamiltonian in (3.1) through a proposition of
the following ansatz. It describes azimuthal mod-
ulations with q droplets. The BEC homogeneous
state, takes place when q = 0. Finally, the domains
where BEC, isolated droplets and supersolids have
the lowest energy are identi�ed.

ψ(~r) =
√
nq exp

[
−1

2

(
r −R
σ

)2
]
exp

(
−1

2

cos2(θ)

β2

)
×

×
q−1∑
p=0

exp

[
− (φ− 2πp/q)2

α2

]
.

(3.4)

We have reproduced the diagram in the direc-
tion of εdd (Figure 3.8). Below a critical value, it
has been identi�ed a region where BEC dominates
(q = 0). Transitions from BEC to many isolated
droplets has been captured [14]. Emergence of su-
persolidity is prospected in a narrow region between
these both phases due to the overlap of the gaus-
sians' tails inside the sum in (3.4). To con�rm it,
the super�uid fraction should be evaluated for each
con�guration [?]. Additionally, as εdd increases with
N �xed, the quantity of droplets decreases owing to
dipolar interaction.

Figure 3.8: Phase diagram built with the ansatz
(3.4) [14]. When εdd increases, the system changes
from BEC to quantum droplets arrangement and q
tends to decrease, as shown by [?]. Conversely, if
N grows, q also increases. However, this diagram
di�ers from Figure 3.7 to low N, where numerical
solution point out BEC throughout εdd direction.
Figure elaborated by [14].

In spite of this partial agreement, the behav-
ior when N varies must be improved. Although
for �xed εdd the number of droplets changes more
slowly as one moves to right in Figure 3.8, the BEC
phase has not been found everywhere for low N . A
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hypothesis to explain this is the negligence of the
azimuthal component of the kinetic energy in the
�rst calculations. This has been done because that
portion is a product between a divergent quantity
and another approximately zero. Discarding it un-
dervalues the energy of isolated droplets and sup-
posed supersolids. By regularizing this component
of kinetic energy, it might reproduce the domain of
BEC in the bottom of the diagram.

3.7 Conclusion

Dipolar ultracold gases display the consequences
of the interplay between spatial restriction and in-
teractions of distinct nature. Although the Mean
Field regime is frequently succeed, there are situa-
tions which its prediction of collapse fails. To obtain
a more accurate description, e�ects of quantum �uc-
tuations must be taken into account. This energy
term explains the existence of quantum droplets, an
exotic denser phase that shares features with clas-
sical liquids, albeit it shows a unique self-bounded
character. In su�ciently dense dipolar systems, a
lattice of multiple coherent droplets can arises. It
constitutes a supersolid, where paradoxically, solid
and super�uid properties coexist.

Through an ansatz, expected values of the eGPE's
Hamiltonian have been calculated to build a phase
diagram of a thin shell trapped dipolar system. Our
�ndings agree with a recently carried out numer-
ical solution when the relative strength of dipolar
interaction is varied. Nonetheless, we have not re-
produced the exclusive occurrence of BEC for low
numbers of particles. To achieve it, the discarded
azimuthal component of the kinetic energy must be
regularized. In our approach, emergence of superso-
lidity is expected in a narrow region, even though it
still needs to be con�rmed by evaluating super�uid
fraction.
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